skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Huidong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wasserstein GANs are increasingly used in Computer Vision applications as they are easier to train. Previous WGAN variants mainly use the l1 transport cost to compute the Wasserstein distance between the real and synthetic data distributions. The l1 transport cost restricts the discriminator to be 1-Lipschitz. However, WGANs with l1 transport cost were recently shown to not always converge. In this paper, we propose WGAN-QC, a WGAN with quadratic transport cost. Based on the quadratic transport cost, we propose an Optimal Transport Regularizer (OTR) to stabilize the training process of WGAN-QC. We prove that the objective of the discriminator during each generator update computes the exact quadratic Wasserstein distance between real and synthetic data distributions. We also prove that WGAN-QC converges to a local equilibrium point with finite discriminator updates per generator update. We show experimentally on a Dirac distribution that WGAN-QC converges, when many of the l1 cost WGANs fail to [22]. Qualitative and quantitative results on the CelebA, CelebA-HQ, LSUN and the ImageNet dog datasets show that WGAN-QC is better than state-of-art GAN methods. WGAN-QC has much faster runtime than other WGAN variants. 
    more » « less